Cost-Sensitive Portfolio Selection via Deep Reinforcement Learning
نویسندگان
چکیده
منابع مشابه
Cost-Sensitive Reinforcement Learning
We introduce cost-sensitive regression as a way to introduce information obtained by planning as background knowledge into a relational reinforcement learning algorithm. By offering a trade-off between using knowledge rich, but computationally expensive knowledge resulting from planning like approaches such as minimax search and computationally cheap, but possibly incorrect generalizations, the...
متن کاملEmotional Reinforcement Learning for Portfolio Selection
Reinforcement learning algorithm has been successfully used in prediction and decision making [5,11]. The main contribution of this paper is to provide decision making using reinforcement learning approach to allocate resources optimally in stochastic conditions in a well known example; in the portfolio selection. The modern theories of portfolio selection consider some presumptions. But if the...
متن کاملCost-Sensitive Exploration in Bayesian Reinforcement Learning
In this paper, we consider Bayesian reinforcement learning (BRL) where actions incur costs in addition to rewards, and thus exploration has to be constrained in terms of the expected total cost while learning to maximize the expected longterm total reward. In order to formalize cost-sensitive exploration, we use the constrained Markov decision process (CMDP) as the model of the environment, in ...
متن کاملShared Autonomy via Deep Reinforcement Learning
In shared autonomy, user input is combined with semi-autonomous control to achieve a common goal. The goal is often unknown ex-ante, so prior work enables agents to infer the goal from user input and assist with the task. Such methods tend to assume some combination of knowledge of the dynamics of the environment, the user’s policy given their goal, and the set of possible goals the user might ...
متن کاملInverse Reinforcement Learning via Deep Gaussian Process
We propose a new approach to inverse reinforcement learning (IRL) based on the deep Gaussian process (deep GP) model, which is capable of learning complicated reward structures with few demonstrations. Our model stacks multiple latent GP layers to learn abstract representations of the state feature space, which is linked to the demonstrations through the Maximum Entropy learning framework. Inco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Knowledge and Data Engineering
سال: 2020
ISSN: 1041-4347,1558-2191,2326-3865
DOI: 10.1109/tkde.2020.2979700